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The results of our earlier work on the quantum theory of electron-gas plasma oscillations in a magnetic 
field are extended here to take account of the difference in masses associated with the orbital and spin parts of 
the individual electronic motions in the presence of a lattice, and allowance is made for an anomalous elec
tronic g factor. Tractable expressions for the complete plasmon dispersion relation and damping constant (at 
arbitrary temperature and arbitrary magnetic field strength), which are obtained using a Green's-function 
formulation of the random-phase approximation, are reported. The low-wave-number (p) approximation 
of the dispersion relation is investigated in detail. For^ = 0 the usual result obtains, l/cop

2=sm2d/Q0
2 

+cos20/(S2o
2—coc

2), with two plasma modes; these are shifted to order p2 by terms that are oscillatory in the 
de Haas-van Alphen (DHVA) sense in the degenerate case. Another plasma resonance in the vicinity of 2coc, 
which is active to order p2, exhibits such DHVA oscillatory behavior, and the same may be said for a gap in 
the frequency spectrum for propagation perpendicular to the magnetic field in the interval \jac, 2coJ. The 
relative amplitudes for the plasma modes are reported also. The terms which are oscillatory in the DHVA 
sense are exhibited in terms of an appropriate Fourier series, with no restriction on temperature or magnetic 
field strength, save that ft^l (that is to say that no restriction is placed on fooc/3). Moreover, the spectral 
composition of the DHVA oscillatory terms is thereby explicitly shown to be a sensitive function oig(m/m0), 
and this result may be useful for the experimental determination of the product of anomalous electronic 
g factor and effective mass m. A considerable improvement over other recent work on this subject has been 
achieved through a careful and correct determination of the role of the DHVA terms as a whole in the plasma 
oscillation spectrum. 

I. INTRODUCTION 

THE development of a quantum-theoretical plas
mon dispersion relation for the electron gas in a 

magnetic field has been the object of considerable atten
tion recently.1-3 In a publication on this subject by 
Gartenhaus and Stranahan,4 it was suggested that cer
tain modifications are induced in the plasmon disper
sion relation by recognizing a distinction between the 
spin part of the Hamiltonian and the part describing 
orbital motion due to the presence of a lattice. Specifi
cally, this suggestion is based on the qualitative argu
ment that the orbital part of the electronic motion in a 
magnetic field is coupled to the lattice so that one must 
at least introduce the effective mass m in the corre
sponding part of the Hamiltonian, whereas this is not 
the case for the spin part of the motion so that the 
ordinary mass mo is retained in the Pauli spin term of 
the Hamiltonian. In addition, allowance is made for 
an anomalous electronic g factor. A result of these con
siderations is that parts of the plasmon dispersion rela
tion in the degenerate case which are oscillatory in the 
de Haas-van Alphen (DHVA) sense depend rather 
sensitively on the parameter g(m/mo). 

The purpose of this paper is to report the results of 
extending our earlier work5 on the plasmon dispersion 
relation to take account of the modifications indicated 

t Supported by the U. S. Air Force Office of Scientific Research. 
1 P. S. Zyryanov, Zh. Eksperim. i Teor. Fiz. 40, 1065 (1961) 

[English transl.: Soviet Phys.—JETP 13, 751 (1961)]. 
2 M . J. Stephan, Phys. Rev. 129, 997 (1963). 
3 N. D. Mermin and E. Canel, Ann. Phys. (N. Y.) 26, 247 

(1964). 
4 S. Gartenhaus and G. Stranahan, Phys. Rev. 133, A104 

(1964). 
5 N. J. Horing, Ann. Phys. (to be published). 

above. In particular a careful determination of the role 
of DHVA oscillatory terms as a whole in the plasma 
oscillation spectrum for the degenerate gas is presented. 
[These results are in disagreement with the corre
sponding conclusions of Gartenhaus and Stranahan.4 

Specifically, the latter authors obtain a zero-wave-
number limit for the plasmon dispersion relation which 
is substantially different from the usual result, l/co^2 

-sin2l9/fio2+cos2^/(12o2-coc
2), which we find to be 

valid within the scope of the random-phase approxima
tion for the degenerate gas as well as the nondegenerate 
one, even with the indicated modifications.] In addi
tion, the terms which are oscillatory in the DHVA 
sense are exhibited in terms of an appropriate Fourier 
series, with no restriction on temperature or magnetic 
field strength save that the condition of degeneracy be 
fulfilled, f#2>l (that is to say that no restriction is 
placed on ho)cfi). The spectral composition of the 
DHVA oscillatory terms is thereby explicitly shown to 
be a sensitive function of g(m/mo). 

II. PLASMONS IN A MAGNETIC FIELD 

An analysis of the inverse longitudinal dielectric 
function for an electron gas in a magnetic field was 
presented by the author recently,5 and the concomitant 
plasmon dispersion relation was studied within the 
scope of the random-phase approximation using the 
Green's-function method. There, a relatively tractable 
expression of the plasmon dispersion relation was ob
tained, and particular attention was given to the low-
wave-number approximation of the dispersion relation, 
which involves terms that are oscillatory in the DHVA 
sense in the degenerate case, and involves quantum 
corrections through the parameter hcacp in the non-
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degenerate case.6 Of course, the relative amplitudes of 
the various plasmon modes considered were calculated, 
and a thorough discussion of the natural damping was 
given. 

There is no need to rederive the plasmon dispersion 
relation in detail here since the modifications contem
plated in the introduction involve only slight changes 
in the formal structure of our earlier work. A thorough 
discussion of the calculational techniques is given there, 
and the interested reader will find detailed derivations 
of results which are analogs of all those which will 
be presented here. With this in mind, it is sufficient for 
our purposes here to note that the appropriate Green's 
function involved in the derivation of the plasmon dis
persion relation satisfies the Eqs. (la) and (lb) below, 

G( r , / ; rVO : =exp[^e r -Hxr , -^ ( r )+^ ( rO] 
X S ' ( r - r ' , * - 0 , (la) 

[VR
2/2m-|^coc

2(X2+P)+HLz-Mo^cr3 

+r+f(a/ar)]3,(R,r)=8(R)8(r). (ib) 

All gauge dependence <p and dependence on r + r ' is 
embodied in the factor 

C(r,rO = e x p [ i f « - H x r , - ^ ( r ) + ^ ( r / ) ] . 

[The quantity Z^G'(R,r) = (Lz+Lz>)G'(t-rf, t-tf) 
measures the loss of orbital angular momentum in the 
direction of the magnetic field suffered by an electron 
as it propagates between the points (r,t) and ( r ' / ) ; 
since this component of orbital angular momentum is 
conserved, Lz(5'(R,r) = 0, and there is a considerable 
simplification of (lb).] A closed solution may be ob
tained for (lb), and the resulting grand-canonical en
semble averaged Green's function is given by 

dW- i [ l - /o (u ) ]> /G>(r,r',r)\ f <fa>/-Cl-/o(«)J\ 
( ) = ^ C ( r , r ' ) / —( V - r 
\ (?<(r , r , , r ) / J 2TT\ f/0(o>) / 

X j dT'e™1" \ 
dp 

CM 
^ P . R e x p{-C/xo^3+(^ 2 / 2w) ] r} 

Xsec(Jcocr) exp{~i[(^2+^2)/mcoc] tan(|cocr)}. (lc) 

The notation of Ref. 5 is maintained here.7 The only new notation arises from the fact that our considerations are 
somewhat extended here; g is the anomalous electronic g factor, m the effective electronic mass, and m0 the ordi
nary electronic mass. These enter Eq. (1) in part explicitly and in part through the quantities 

co c = eH/mc; /x 0=g (eh/2m0c). 

With the result (lc), a Green's-function formulation of the random-phase approximation leads to a tractable 
plasmon dispersion relation which takes the form 

1 — 
47re2 1 

p 2 %z 
Imj|*p~[ftQ+ie] 

[ IT 
=o, 

while the damping may be expressed as y==ZT, where 

4TT02 1 

r(p,G)= 2Re/| Up,-tm+ie]\ , 

(2) 

(3) 

and Z is the amplitude weight function which measures the relative importance of the various plasmon modes in 

6 The interested reader will also find (see Ref. 5) that the many plasmon resonances for propagation nearly perpendicular to the field 
were analyzed in detail in the semiclassical and classical limits, and their behavior in the asymptotic case p2(£ or l//3)/wcoc

2»l 
was considered in order to achieve an understanding of the manner in which the nonuniform zero-field limit is attained. 

7 We briefly recount the notation of Ref. 5 which is relevant to the plasmon dispersion relation and damping constant [Eqs. (2), 
(3), (4), and (5)]; 

0 = plasmon root; up — (Aire2p/m)1/2-

p=wave vector = •iiM 
0 = angle between p and the plane perpendicular to H. 
The magnetic field is taken to be directed along the z axis and has strength H. 
T=—ifi=i—i/kT; (&=Boltzmann constant, T=absolute temperature), 
f=chemical potential, 
/o(«) = Fermi function = [ l + e ^ W ] - 1 . 

Note that in Eq. (4b) the notation j dT is simply meant to indicate that J dZV**"<0±"')r = -. , >r. 

[Note that in Eq. (4), Pf indicates that the principal value of the integral is to be taken.] 
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response to excitation and may be calculated as the inverse of the 12 derivative of the dispersion relation. The 
modifications sought are embodied in the integral I(hp}(r/Tr)[hQ+i€j) whose real and imaginary parts may be 
calculated using the Green's function (1), with the result 

1 / r \ f doo C door cof f0(o)) 
— Im/( tip,-[*Q+fe] ) = P / — / 2?(co,ftco'; ftp) (4a) 
ti* \ r J J 2TT J 2w 0 2 - a / 2 ¥ 

1 / r \ P r r du r do/ 
— I m / [ f t p , - [ « 2 + i c ] ) = — dT — — ( e - ^ ^ ' ) r - - ^ ^ - - , ) 2 , ) [ / o ( c o ) A 3 ] i ? ( c o ^ / ; ^ p ) , (4b) 
ft3 \ TT / 2 i i L J 2TTJ 2ir 

1 / r \ rda>f0(<a) 
- Re/( ftp,-[AQ+ie] ] = J / J ? M Q ; *p) , (4c) 
ft3 \ 7T J J lit tlZ 

r°° r00 2isin|^co^ / 7r3/2 \ /2m\1/2 mho)c 

R(a>,fia>'; tip) = dx dyeiwx
 e-U<*'vl jf — J _ 

J-^ J ̂  ti \(2ir)zJ\ix J ism%tiQ)cx/costAQHx 

/ pz
2ti2x2—y2\ / p2 cos^cocy—co$>%ticocx\ 

X expf — i Jexpf — i ; ) . (5) 
\ 2m 4# J \ 2m (ojjti) smhtio)cx / 

or 

and 

where 

Note that the density is now expressed as 

f do) fQ(o)) f 7T3/2 /2m\l/2 mfuac 

p=2 / dxe*** f — J — . (6) 
J 2ir tiz J ( 2 x ) 3 \ i x / i sm^tio}cx/cos^Hx 

Here, a small negative imaginary part is associated with x, i.e., x —> %—id, in the integrands of R and p. Therefore 
the x integration may be taken in the sense of an inverse Laplace transform. 

The low-wave-number approximation of the dispersion relation may be written in terms of the quantities s±=p/a 
and S2~p/a as, 

1 sin20 cos20 3 s i n 4 ^ 2 l cos46^ 

( — — - ) 
\tt2-(2o)c)

2 W-o)2J 

2 Q2 02-coc
2 ms2 fi4 ms1o)c

2\22-(2o)c)
2 W-OJC 

sin2dcos2dp2 302—coc
2 sin26 cos26p2 3ft2+coc

: 

msx 02(02-coc
2)2 ms2 (122-coc

2)3 

Here, cr and a are defined as 

(7) 

5 /o(«) riQ0+8 ds irzl2 (2m\112 m(tio)c)
2 

dec / —fs f — ) : , (8a) 
tiz 7-^+5 2-KI {2TT)Z\ S J tanh|ftcocs sinhj^co^/cosh/xo^ 

r /o(«) r 
a~ I do) / 

Jo tiz J^ 

/o(co) fico+8 ds TT3/2 (2m\112 mfa 
e«s / j _ 

,+§ 2iri {2TC)Z\ S / smh%ticocs/coshnoHs s 
— -7TTT . . . " , (8b) 

and p is the density which may be expressed as 

r /o(w) r°°+ 5 ds TZ/2 /2m\1'2 mtiuc 
p = 2 / do:- / e"s ( ) — . (8c) 

Jo tiz J_io0+t2iri (2TT)Z\ s J sinhJ^cocVcosh/x0^ 

A direct physical interpretation of cr and a has been advanced in Ref. 3. Putting T\i = l/2s2'=a/2p and W= l/si 
= a/p, one may take T\ \ and W, respectively, as the mean kinetic energy of motion parallel to H, and the mean 
oscillator "potential energy" per particle in equilibrium. This dispersion relation has just two roots in the limit of 
zero wave number, and they are given by, 

^ 2 = KV+^2)±4E(<4W)2-W"c2 sin^]1'2. (9) 
This result and the usual zero-wave-number dispersion relation from which it follows, l/a>/=sin20/Qo

2+cos20/ 
(fio2—wc

2), are in sharp disagreement with the corresponding conclusions of Ref. 4. The substantially different 
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results of the latter authors seem to be erroneous even in the simpler situation when m=nto and g = 1. [This error 
may be traced to the incorrectness of Eq. (12) of Ref. 4.] 

The p2 terms of the dispersion relation (7) shift the roots (9), and to order f1 this shift is described by the 
formula 

(cop
2+coc

2-2coc
2 s i n 2 0 ) a ^ ( a o O 

£ie=tto*2+ipWF(Vo*)±p2 _„, — , , (10) 

where 

F(Q) = -
3sin40 1 3cos40 1 

2[ (co /+co c
2 ) 2 -4a^W sin20]1/2 

sin2(9 cos20/ 1 302-coc
2 1 302+coc

2 

ms2 O4 »wi (122-(2coc)
2)(02-coc

2) m V^ 122(02~COC
2)2 S2(a2-CO c

2) 

r W \ 
C O c

2 ) 3 / ' 
(U) 

In addition to shifting the roots O^2 the dispersion rela- ner indicated above are transmitted to the description 
tion (7) dictates the presence of another root in the of low-wave-number plasmon propagation in a mag-
small interval |£22— (2coc)

2| ~fP/msi. The location of this netic field through the integrals p,(T,a. In the non-
degenerate case the relations root is readily seen to be given by 

cos^p' 
O(2co<:)

2=(2coc)
2+ 

X-

cr= (^coc/tanh|fecoc/3)p, 

«=( l / ]8)p , 

(17a) 

(17b) 

ooc
2—lo)p2 sin20—|cop

2 cos20 
(12) 

Of the three plasmon modes ft<, S2>, 0(2wc) discussed so 
far, one lies in the interval [coc,2a; J . I t may be either 
0> or O(2coc) and we will denote it by ft[WCf2wc] = Q> or 
S2(2wc). Part of the interval [coc,2a;J is inaccessible to 
[̂«c,2«c]>

 a n d t n ^ s " g a P " in the frequency spectrum may 
be calculated for 0=0 , with the result 

2wc—0[Wc,2«fl] > Sp2/4mo)cSi. (13) 

The relative amplitudes of the plasmon modes 12> 
and 0< may be approximated as follows. For (a^>ooc 

we have 

Z(0>) = Jcop; Z(0<) = (a>c
3/2co/> sin0 cos20, (14) 

whereas for coĉ >cop we have 

Z (0>) = (cop
2/2coc) cos20; Z (G<) = |co„ sin0. (15) 

The root &(2Wc) has corresponding weight 

/>2a>ccos40r/coc
2 \ 2 

are exactly preserved, and so there are no changes 
arising from the fact that ni^ni* and g ^ l . The situa
tion is quite different in the degenerate case. Separating 
p, cr, a into branch line and isolated pole contributions 
as usual, 

(p,<r,a) = (j>T,<rr,ar)+lL,(Pcn9<rcn,<Xcn) , ( I 8 ) 
n 

one finds that the branch line contributions are ap
proximately, 

fm\zl2 2 f3/2 

p r = l — 1 
- < • 

aT= 

arz: 

2TTJ T(5/2) ¥ 

wy/2 2 f5/2 

2TT/ T(7/2) ft3 

3/2 2 f5/2 

" \ 2 x / T(7/2) ¥ 

(19a) 

(19b) 

(19c) 

Z(Q(2Wc)) = 
4mo>p

isi IL« * J s in 2 0-4 cos20 (16) 

[One should not confuse the subscript T on the left-
hand side of (19) which refers to the branch line with 
the r function appearing on the right-hand side of 
(19).] Roughly speaking, this shows that a~a~lp in 
the degenerate case [whereas a~a~ (l//3)p in the non-
degenerate case]. The isolated pole contributions yield 

The effects of distinguishing the spin part of the terms that are oscillatory in the de Haas-van Alphen 
motion from the orbital part of the motion in the man- (DHVA) sense, 

III. SPIN EFFECTS AND THE SPECTRAL COMPO
SITION OF DHVA OSCILLATORY TERMS 

ms/2(faooc)
1/2 oo cos\jrn(2fj,oH/ficx}c)~\ cos[(27rWftcoc)f—37r/4~l 

£PC= £(-D"— ; . , V — , 
n irfihz «=i n112 sinh(27r%/fccjS) 

(20a) 

m 3 / 2 ( ^ c ) 3 / 2 oo (-l)»cos[™(2ju0#/Acoc)] 

2TT2I3¥ n - i n*i2 smh(2w2n/tia>cl3) 

flO)c \ fa 

( 2ir2n / /2ir2n\\ /2irn 
- ( h-\ / tanhl J Jcos ( r 

) 

2irti 5TT\ 

4 / 

+2irn cosl f )+7ra tan( 
2HQH 

tan! wn- (2?m 
— f -
fao)c -0 

m3/2(ftcoc)
3/2 oo cosCx»(2/zofir/*coc)] cos[(2im/ftwc)t-5*r/4] 

£«<*= E(-l)w 

2TT2^^3 n-i w3/2 sinh(27rV^ciS) 

(20b) 

(20c) 
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These Fourier series representations of the DHVA oscil
latory terms explicitly show that the spectral composi
tion depends rather sensitively on the parameter 
g(m/mo) through factors such as cos[jm(2nQH/ha)c)"] 
= cos\jrng(fn/tnd)"]. In fact, pCn and aCn differ from their 
counterparts in the simpler situation (when m = mo and 
g = l ) just by factors of (— l ) n cos\jrng(m/mo)'}] the 
more complicated nature of aCn derives from the fact 
that these terms arise from second-order poles in the s 
integration of (8a), whereas the poles responsible for 
pCn and aCn are simple poles. The sensitive dependence 
of DHVA oscillatory terms on the parameter g(m/mo) 
is not at all an unfamiliar phenomenon. An account of 
such behavior in the DHVA oscillatory terms of the 
magnetic susceptibility may be found in Wilson's book.8 

One may feel encouraged by the fact that such DHVA 
oscillatory terms should be observable under the same 
conditions of field strength as the de Haas-van Alphen 
effect itself is. However, the shortcomings8 of a simple 
electron gas theory of the latter in explaining data 
(even with provision for taking account of effective 
mass in the orbital part of the motion and an anomalous 
g factor in the spin part of the motion) may be expected 
here too. Such shortcomings must be reckoned with in 
attempting to use the sensitivity of the DHVA oscilla
tory terms to variations in the parameter g(m/mo) as a 
mechanism for measuring the product of the anomalous 
electronic g factor and effective mass m. 

The role of the DHVA oscillatory terms as a whole in 
the low-wave-number plasma oscillation spectrum is 
determined by the occurrence of the quantities Si—p/a 
and s2=p/a in the plasmon dispersion relation, and the 
ramifications of this with respect to the plasmon modes 
ft>, 12< and fi(2Wc) have been discussed in the preceding 
section. I t is appropriate at this point to give a few 
qualitative statements about the natural damping of 
these modes. (Detailed natural damping formulas and 
derivations may be found in Ref. 5, and will not be 
presented here.) The natural damping of £2> and 12< in 
the degenerate case is exponentially small in a manner 
that is formally similar to the nondegenerate natural 
damping expression of Landau, the latter being appro
priately modified to take account of the presence of 
the magnetic field. The same may be said for the 
natural damping of the mode 0(2wc) provided that 
the direction of propagation is confined to the ang
ular interval 0 < (£2f/W>c

2)1/2. For propagation outside 
this angular interval, the natural damping of 0(2aJc) 
ceases to be exponentially small, and the increase 
in natural damping is accompanied by terms that are 
oscillatory in the DHVA sense, but with a modified 
DHVA oscillation frequency. [Although the natural 
damping formulas of Ref. 5 are given for the case 
m = mo and g— 1, it is clear that the spectral composition 
of the DHVA oscillatory terms in the natural damping 

8 A. H. Wilson, Theory of Metals (Cambridge University Press, 
Cambridge, England, 1953), 2nd ed., pp. 164-175. 

will depend sensitively on the parameter g(m/mo)^ I t 
should be noted that DHVA oscillatory terms are com
pletely absent from the natural damping as long as it 
is exponentially small. 

IV. CONCLUSIONS 

Tractable expressions for the complete dispersion re
lation [Eqs. (2), (4), and (5)] and damping constant 
[Eqs. (3), (4), and (5)] for plasmons in a magnetic field 
have been obtained using a Green's-function formula
tion of the random-phase approximation. These general 
results are valid for all magnetic field strengths as well 
as all values of temperature, and are applicable to both 
the degenerate and nondegenerate cases. Moreover, 
they are not encumbered by unwieldy summations over 
Landau eigenstates. The dispersion relation has been 
investigated in the long-wavelength approximation in 
detail, with special attention given to determining the 
role of de Haas-van Alphen (DHVA) oscillatory terms 
in the degenerate case. In the long-wavelength limit, 
(p — fy> the usual result of two plasma modes is con
firmed here exactly [Eq. (9)]. These two modes are 
shifted to order p2 by terms that are oscillatory in the 
DHVA sense in the degenerate case [Eq. (10)]. An
other plasma resonance in the vicinity of 2coc, which is 
active to order p2 [Eq. (16)], exhibits such DHVA 
oscillatory behavior [Eq. (12)], and the same may be 
said for a gap in the frequency spectrum for propagation 
perpendicular to the magnetic field in the interval 
[coc,2o?c] [Eq. (13)]. The distinction between the masses 
associated with the orbital and spin parts of the indi
vidual electronic motions in the presence of the lattice, 
and the anomalous electronic g factor, give rise to a 
special sensitivity of the DHVA oscillatory terms. A 
representation of the latter in terms of an appropriate 
Fourier series [which is valid for all magnetic field 
strengths and temperatures as long as the condition of 
degeneracy is fulfilled f/£2>l; that is to say that no 
restriction is placed on ftoocfi; Eq. (20)], explicitly shows 
that the spectral composition of the DHVA oscillatory 
terms is a sensitive function of g(m/mo)^ This is 
manifested by the appearance of factors such as 
cos\jrng(m/mo)2 m the Fourier coefficients, and the 
small shift in g(m/mo) from integral to half-integral 
values produces significant changes in the spectral 
composition. 

I t has already been pointed out4 that one may hope 
to observe effects of the type discussed here in n-type 
In As and InSb, since the properties of these materials 
are in accord with the conditions under which the 
present analysis is valid. Specifically, the considerations 
taken here are valid only as long as a "one band" 
description is reasonable. Therefore, it is at least neces
sary that the plasmon energy hoop be too small to excite 
interband transitions, ho)p<K(energy gap). Moreover, 
the collision time r must be large compared to uc~

l as 
well as cof1 so that the free and collective aspects of 
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the electronic motions, which are an integral part of 
the description given by the random-phase approxima
tion, are not destroyed by collisions. In addition, it 
should be noted that the results given by Eq. (20) indi
cate that the DHVA oscillatory terms arising from the 
Landau quantization of orbits are most strongly felt 
when ttocPSl. Finally, one must bear in mind that the 
validity of the random-phase approximation is re
stricted to long wavelengths in the sense that p2^/mcop

2 

<^1, (degenerate case). The long-wavelength approxi
mation as it is formulated here, in the presence of a 
magnetic field, also requires that p2£/?nac

2<<Cl. 
The results here show that the suggestion of Garten-

haus and Stranahan,4 concerning the possibility of 
determining the product of anomalous electronic g 
factor and effective mass m by using the sensitivity of 
DHVA oscillatory terms associated with plasmon phe
nomena to order p° (zero wave number), can be con
sidered a meaningful scheme only if one takes account 
of plasmon phenomena to order p2 rather than p°. This 
will be the case for reflection experiments as well as 
any other plasmon excitation experiments (fast particle 
energy loss, etc.). The implication is that the effects 
will be small in the same sense that p2 is small. In the 
presence of a magnetic field, "small p2" has different 
meanings in connection with different phenomena, and 
while p2 must be small in all possible senses it may be 
larger in some contexts than others. For example when 
o)p> o)c the p2 shifts of the roots & ̂ , (Oo>2=cop

2+cos20coc
2; 

O0<
2 = sin20coc

2), may be estimated as 

12>—OQ> 

0 < — £ 2 Q < 

* W P2t 

Go 

m l 2 0 > 6 mo)p
2 

* 2 J V « C 2 p2i «,* 

ml2o<6 w / mo)p
2 coc

4 

While the shift of £2> is governed by the small pa
rameter p2£/fnup

2, the shift of £2< is governed by the 
parameter {p2%/fnup

2) (co//coc
4) which must still be small 

but is larger than p2£/ma3p
2 by a factor co//coc

4~ 100 
for o)p

2~ 10cuc
2. (It is not advisable to consider magnetic 

field strengths for which uc is very small because the 
amplitude for exciting fto< would then be very small; 
moreover, the magnetic field must be sufficiently large 
that p2$/mo}?<\) The plasma resonance in the vi
cinity of 2o)c may be estimated as 

^ ( 2 w c ) _ 2C0( 

2coc 

PH o>p
2 

mcop
z uc 

and the gap in the frequency interval [coc,2coc] for 
propagation perpendicular to the magnetic field may be 
estimated as 

[wc,2coc]" '2o)c 

2(x)c 

PH Up 

mco*) 

Again, the "small p2" parameter is somewhat larger 
than p2£/tnup

2. 
The formulas which we have presented here show that 

the oscillatory parts of p, a, a are small compared to the 
branch line contributions, since the latter are given by 
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whereas the oscillatory parts are given by (#WC/£>>1), 
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These results for the branch-line contribution obtain 
under the condition %o)c<££, whereas the results for the 
oscillatory parts are free of this restriction. The small-
ness of oscillatory effects which was anticipated in 
Ref. 3, on the basis of the fact that the energies Tu 

= l/2s2z=a/2p and W=l/si=<r/p contain terms which 
are independent of or linear in H (which do not appear 
in the susceptibility), is thus explicitly demonstrated 
under the condition #coc<$Cf. However, the oscillatory 
terms can be of greater importance in the physically 
realizable quantum strong field situation, when ho)c^^. 
The estimates for the oscillatory parts given above are 
still reasonable, but one must reconsider the branch-line 
contributions. An estimate of the latter may be ob
tained by inspecting the p2 terms of Ref. 5, Eq. (AIII.6), 
[or equivalently the n=0 term of Ref. 3, Eq. (3.21)]. 
This results in 
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and in view of the fact that #coc~f the oscillatory parts 
are of comparable importance in the quantum strong 
field situation. This is simply to say that the presence 
of terms in the energies Tu and W which are independent 
of or linear in H cannot be taken to mean that the 
oscillatory parts are small when feoc~£. 


